个人简介
叶剑红,男,1981年6月生,安徽安庆人,2012年毕业于英国Dundee大学,获得博士学位。现任中国科学院武汉岩土力学研究所教授研究员,博士生导师;武汉理工大学安全科学与应急管理学院研究生兼职导师。
主要荣誉及学术任职
[1] Bulletin of Engineering Geology and the Environment (SCI检索)期刊编委
[2]《水动力学研究与进展》期刊编委
[3]《爆破》期刊编委
[4] 2014年获得中国地质学会工程地质专业委员会“谷德振青年科技奖章”
[5] 2009年获得英国工程与物理科学研究委员会(EPSRC)全额奖学金资助攻读博士学位
[6] 2010年获得英国政府优秀海外研究生奖学金(ORS)
主讲课程
[1] 本科生课程:无
[2] 研究生课程:高等土力学(在中国科学院大学北京雁西湖校区授课)
主持科研项目 (2010年以来)
[1]国家自然科学基金面上项目,南海吹填岛礁护岸防波堤在台风天气中极端波浪冲击下的稳定性研究(项目编号:51879257),62万,主持,期限:2019.1-2023.12。
[2]国家自然科学基金面上项目,考虑非线性孔隙流的近海结构物海床地基内波致渐进液化研究(项目编号:41472291),98万,主持,期限:2015.1-2018.12。
[3]中国科学院战略性先导专项A子课题,吹填岛礁工程结构物及其地基稳态和服役性能(项目编号:XDA13010202),1500万,主持,期限:2016.1-2021.12。
发表论文情况 (2010年以来)
2019年:
[1] Ye J H*, Zhang Z H and Shan J P (2018). Statistics-based method for determination of drag coefficient for nonlinear porous flow in calcareous sand soil. Bulletin of Engineering Geology and the Environment, 78(5): 3663-3670. (SCI检索)
[2] 叶剑红*,曹梦,李刚 (2019). 中国南海吹填岛礁原状钙质砂蠕变特征初探. 岩石力学与工程学报, DOI: https://doi.org/10.13722/j.cnki.jrme.2018.0695. (EI检索)
[3] 曹梦, 叶剑红* (2019). 中国南海钙质砂蠕变-应力-时间四参数数学模型. 岩土力学, 2019, 40(05):1771-1777. (EI检索)
[4] 高冉, 叶剑红*. 中国南海吹填岛礁钙质砂动力特性试验研究.岩土力学, 2019(10), DOI: https://doi.org/10.16285/j.rsm.2018.2085. (EI检索)
2018年:
[1] He K P, Huang T K and Ye J H* (2018). Stability analysis of a composite breakwater at Yantai port, China: An application of FSSI-CAS-2D. Ocean Engineering 168, 95-107. (SCI检索)
[2] Yang G X and Ye J H* (2018). Nonlinear standing wave-induced liquefaction in loosely deposited seabed. Bulletin of Engineering Geology and the Environment, 77 (1): 205-223. (SCI检索)
2017年:
[1] Ye J H*, Jeng D-S, Chan A H C, Wang R & Zhu C-Q (2017). 3D Integrated numerical model for Fluid-Structures-Seabed Interaction (FSSI): loosely deposited Seabed Foundation. Soil Dynamics and Earthquake Engineering, 92, 239-252. (SCI检索)
[2] Yang G X and Ye J H* (2017).Wave & current-induced progressive liquefaction in loosely deposited seabed. Ocean Engineering. 142, 303-314. (SCI检索)
2016年:
[1] Ye J H* and Wang G (2016). Numerical simulation of seismic liquefaction mechanism in Quaternary loose seabed, Bulletin of Engineering Geology and the Environment, 73(3): .1183-1197. (SCI检索)
[2] Ye J H, Huang D R* Wang G (2016). Nonlinear Seismic Dynamics of Offshore Breakwater built on sloping Quaternary sediments. Bulletin of Engineering Geology and the Environment, 73(3): 1215-1225. (SCI检索)
[3] Ye J H*, Jeng D-S, Chan A H C, Wang R & Zhu C-Q (2016) 3D Integrated Numerical model for Fluid-Structures-Seabed Interaction (FSSI): Elastic dense Seabed Foundation. Ocean Engineering, 115:107-122. (SCI检索)
2015年:
[1] Ye J H* & D-S Jeng et(2015) Numerical Simulation of Wave-induced Dynamic Response of Poro-Elasto -Plastic Seabed Foundation and Composite Breakwater, Applied Mathematical modeling, 39 (1), 322-347. (SCI检索)
[2] Ye J H & Wang G* (2015). Seismic dynamics of offshore breakwater on liquefiable seabed foundation. Soil Dynamics and Earthquake Engineering, 76:86-99. (SCI检索)
[3] Wang L M, Ye J H* and Zhu C Q (2015). Investigation on the wave-induced progressive liquefaction of offshore loosely deposited sandy seabed, Rock and Soil Mechanics, 36 (12), 3583-3588. (EI检索)
2014年:
[1] Ye J H*, D-S Jeng, Wang Ren & Zhu Ch-Q (2014). Breaking Wave-Induced Response of Composite Breakwater and Liquefaction of Seabed Foundation. Coastal Engineering, 85:72-86. (SCI检索)
[2] Ye J H, Zhang Yan*, Wang Ren & Zhu Ch-Q (2014). Nonlinear interaction between wave, breakwater and its loose seabed foundation: A small-scale case. Ocean Engineering, 91:300-315. (SCI检索)
2013年:
[1] Ye J H*, D-S Jeng, Wang Ren & Zhu Ch-Q (2013). Numerical study of the stability of breakwater built on sloped porous seabed under tsunami loading. Applied Mathematical modeling, 37:9575-9590. (SCI检索)
[2] Ye J H*, D-S Jeng, Wang Ren & Zhu Ch-Q (2013). Validation of a 2D Semi-Coupled Numerical Model for Fluid-Structures-Seabed Interaction. Journal of Fluids and Structures, 42: 333–357. (SCI检索)
[3] Ye J H*, D-S Jeng, Wang Ren & Zhu Ch-Q (2013). A 3D Semi-Coupled Numerical Model for the Fluid-Structures-Seabed-Interaction: Model and Verification. Journal of Fluids and Structures, 40: 148-162. (SCI检索)
[4] Jeng D-S*, Ye J H, J-S Zhang PL-F Liu (2013). An integrated model for the wave-induced seabed response around marine structures: Model, verifications and applications. Coastal Engineering, 72 (1): 1-19. (SCI检索)
[5] Ye J H & Jeng D-S* (2013). Earthquake Induced Dynamic Response of 3D Poro-Elastic Unsaturated Seabed under a Rubble Mound Breakwater. Soil Dynamics and Earthquake Engineering, 44(1):14-26. (SCI检索)
2012年:
[3] Ye J H & Jeng D-S* (2012). Response of porous seabed to nature loadings-waves and currents. Journal of Engineering Mechanics, ASCE, 138(6):601-613. (SCI检索)
[4] Ye J H* (2012). 3D Liquefaction Criterion for Seabed Considering the Cohesion and Friction of Soil. Applied Ocean Research, 37:111-119. (SCI检索)
[5] Ye J H*, Jeng D-S & Chan A H C (2012) Consolidation and Dynamics of 3D Unsaturated Porous Seabed under Rigid Caisson Breakwater under Hydrostatic Pressure and Wave. Science China-Technological Sciences, 55(8): 2362–2376. (SCI检索)
[6] Jeng D-S* & Ye J H (2012). Three-dimensional consolidation of a porous unsaturated seabed under rubble mound breakwater. Ocean Engineering, 53:48-59. (SCI检索)
[7] Ye J H* (2012). Seismic Response of Poro-Elastic Seabed and Composite Breakwater under Strong Earthquake Loading. Bulletin of Earthquake Engineering, 10 (5):1609-1633. (SCI检索)
[8] Zhang Y, Ji H G, Ye J H & Li S Y (2012). Analytical solutions of the tensile strength and preponderant crack angle for the I-II mixed crack in brittle material. Mechanika, 18(1): 22-28. (SCI检索)
[9] Ye J H* & Jeng D-S (2012). Numerical Modeling of Consolidation of 2-D Porous Unsaturated Seabed under a Composite Breakwater. Mechanika, 18(4):373-379. (SCI检索)
2012年以前:
[1] Ye J H & Jeng D-S* (2011). Effects of bottom shear stresses on the wave-induced dynamic response in a porous seabed: PORO-WSSI (shear) model. Acta Mechanica Sinica, 27(6):898–910. (SCI检索)
[2] Ye J H*, Wu F Q & Sun J Z (2009): Estimation of the tensile elastic modulus of rock materials with Brazilian disc by applying opposite concentrate load diametrically based on isotropy. International Journal of Rock Mechanics and Mining Sciences, 46(3), 568-576. (SCI检索)